Notes - Rational Exponents

1. A rational number ________________________________
2. A rational exponent is therefore a ________________ exponent.
3. A rational exponent is another way of writing a _______________ (also known as a root). The _______________ of the fraction indicates the root.

 ex 1: \(\sqrt{x} = \) ____________
 ex 2: \(\frac{1}{\sqrt{x}} = \) ____________

 ex 3: \(\frac{1}{x^2} = \) ____________
 ex 4: \(x^{\frac{1}{7}} = \) ____________

4. If the numerator of a rational exponent is not one, then the radical is also being raised to a power. This can be written two different ways.

 ex 5: \(\frac{2}{3} x^\frac{2}{3} = \) ____________ = ____________
 ex 6: \(m^{\frac{5}{2}} = \) ____________ = ____________

Write the following in exponential form. If possible simplify the exponent.

 ex 7: \(\sqrt[3]{x^2} = \) ____________
 ex 8: \(\sqrt[3]{x^6} = \) ____________

 ex 9: \((\sqrt{x})^9 = \) ____________
 ex 10: \((\sqrt[4]{y})^{10} = \) ____________

Write the following as a radical.

 ex 11: \(x^{\frac{2}{7}} = \) ____________
 ex 12: \(y^{\frac{1}{6}} = \) ____________
When the base is a number instead of a variable, a rational exponent can be used to simplify to a number answer.

ex 13: \(8^{\frac{4}{3}} = \) \(\)
ex 14: \(4^{\frac{3}{2}} = \) \(\)

ex: 15: \(9^{\frac{1}{2}} = \) \(\)
ex 16: \(25^{\frac{3}{2}} = \) \(\)

ex 17: \(-8^{\frac{4}{3}} = \) \(\)
ex 18: \((-8)^{\frac{4}{3}} = \) \(\)

ex 19: \(-27^{\frac{4}{3}} = \) \(\)

When two exponents appear on the same base (power to a power), first multiply the exponents together and then simplify if possible.

ex 20: \(\left(\frac{2}{x^{\frac{3}{2}}}\right)^{-6} = \) \(\)
ex 21: \(\left(\frac{4}{x^{\frac{2}{3}}}\right)^{10} = \) \(\)

ex 22: \(\left(\frac{1}{3^{\frac{2}{3}}}\right)^{6} = \) \(\)
ex 23: \(\left(\frac{4}{-3}^{\frac{2}{3}}\right)^{9} = \) \(\)